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Modern Aircraft Fuel Efficiency
For a flight from Seattle to Washington D.C., each 

passenger needs about 29 gallons of fuel

3,709 gal /130 pax = 29 gal/pax

(81 PMPG)

29 

Gal Typical car in SF bay area:

25 mpg * 1.3 pax = 32 PMPG

(Similar to Amtrak)

2,325 mi, 3,709 gal, 162 pax, 80% load factor
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Aviation Contribution to GHG

• Transport responsible for 
about 13%-20% of all GHG 
emissions.

• Aviation contributes about 
13% of transportation CO2 
emissions.

• That seems like 2%-3% of 
CO2, but net effect is 
perhaps 2-4 times this 
(4%-12%), and is 
increasing.
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Sustainable Aviation – The Problem

With the expected increase in global air travel over the next 20-

30 years, the reliability and environmental impact of aviation are 

becoming critical issues for the future of flight.  

Issues:

Safety

Efficiency

Noise

NOx

CO2

H2O
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Sustainable Aviation

Goal: Develop technologies that will allow increased capacity 

with a reduction in environmental impact.
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Approaches to Sustainable Aviation

Aerospace system design for 

the environment

•

• Safely increase the capacity of 

the airspace system

• Active monitoring and 

managing air transportation’s 

environmental footprint
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Increasing Aircraft Efficiency

• Engine efficiency, η, is about 40% (twice that 
of automobiles), and further gains are 
increasingly difficult.

• Transportation is basically 0% efficient.  Why 
do we need energy?

• Energy / distance = Drag / η = Weight /  η L/D
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Aircraft L/D
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Lift-to-Drag Ratio of Other Transport Modes

Passenger car:

L/D = 100 at V≈0

L/D = 40 at V = 60 mph

L/D = 16 at V = 120 mph

Lift

Drag

Rail car: L/D = 1000+ at V≈0

Ships: 550 ft destroyer at 35 kts: L/D ≈ 18
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L/D is not fundamentally limited to ~20

Current transport fuel 
consumption is partly due to 
turbulent tube + wing 
configuration, but also due to 
optimization metrics (cost).

Eta Sailplane: L/D = 70

Span: 31 m
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Optimization for Cost, Fuel, NOx, Climate
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Trading Cost and Climate Impact
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Contrails and Aviation-Induced Cloudiness

Persistent 

contrails formed 

in super-

saturated and 

cold air.
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Contrails and Aviation-Induced Cloudiness

Effect on climate 

has high 

uncertainty and 

might be 

mitigated with 

active rerouting.
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Climate Cost Trade with Contrail Avoidance
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“New” Technologies

New technologies and configuration concepts 
shift the trade-space
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Near-Term Natural Laminar Flow Transport

• 150 pax

3000 n mi 
turbulent range

Mach 0.75

TOFL 7500 ft

-6% to -8% fuel 
burn compared 
with turbulent 
wing design

•

•

•

•
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Boeing High L/D Electric Transport Concept

• N+3 Design Study

Electric propulsion 
with batteries/fuel 
cells/hybrid considered

70% fuel burn 
reduction for 900 mi 
range, 750 wh/kg 
batteries

Mach 0.7 to 0.78

•

•

•
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Specific Energy of Power Systems

Electric power systems 
intriguing but very 
challenging.

Near term possibilities for 
smaller aircraft.

Most electric storage tech 
development focused on 
cost, volume.
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Reflections

NASA focus on green aviation:

– Provides a framework for integrating research 

across ARMD and with related organizations

Encourages more direct interaction with industry

Defines a clearly relevant field of study for 

students and university researchers

Addresses the most important problem in 

aeronautics

–

–

–
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